Learning Model Structure from Data: an Application to on-Line Handwriting

نویسندگان

  • Henri Binsztok
  • Thierry Artières
چکیده

We present a learning strategy for Hidden Markov Models that may be used to cluster handwriting sequences or to learn a character model by identifying its main writing styles. Our approach aims at learning both the structure and parameters of a Hidden Markov Model (HMM) from the data. A byproduct of this learning strategy is the ability to cluster signals and identify allograph. We provide experimental results on artificial data that demonstrate the possibility to learn from data HMM parameters and topology. For a given topology, our approach outperforms in some cases that we identify standard Maximum Likelihood learning scheme. We also apply our unsupervised learning scheme on on-line handwritten signals for allograph clustering as well as for learning HMM models for handwritten digit recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

A neurocomputing framework: From methodologies to application

In this paper, we present a practical framework of methodologies for increasing the efficiency of the training process and improving the generalization capability of neural networks. The methodologies are devised for resolving problems of neural networks primarily in three aspects: learning, architecture, and data representation. For learning we present a rapid learning method based on Aitken's...

متن کامل

Application of Neural Network In Handwriting Recognition

This document describes the application of machine learning algorithms to solving the problem of handwriting recognition. Two models were explored, namely Naïve Bays and Artificial Neural Network, and ANN was found to generate more accurate recognitions. By setting up our model and training on the MNIST database of handwritten digits, we were able to achieve recognition of handwritten digits wi...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009